1. Divisible by 19.

Suppose that $2 x+6 y=19 m$. Then m is even; say $m=2 k$. Then $x+3 y=19 k$, and $5 x+15 y=5 \cdot 19 k$, so $5 x-4 y=5 \cdot 19 k-19 y=19(5 k-y)$. Conversely, suppose that $5 x-4 y=19 n$. Then $5 x+15 y=19 n+19 y=19(n+y)$, and thus $n+y$ is a multiple of $5 ;$ say $n+y=5 r$. Then $5 x+15 y=19 \cdot 5 r$, and $x+3 y=19 r$.

2. Intersections of quadratics.

The two graphs have infinitely many points in common. Since (1) factors as

$$
(2 x+y-4)(x-y)=0
$$

and (2) factors as

$$
(2 x+y-4)(3 x-y-2)=0
$$

the graph of each is a pair of intersecting lines, and the two have the line $2 x+y-4=0$ in common. (The correct statement is that the graphs of two quadratics have at most four points of intersection or they have infinitely many.)

3. No solutions in integers.

Suppose that $m(m+1)=n(n+2)$. Upon adding 1 to each side we have

$$
m^{2}+m+1=(n+1)^{2}
$$

But

$$
m^{2}<m^{2}+m+1<(m+1)^{2}
$$

i.e.,

$$
m^{2}<(n+1)^{2}<(m+1)^{2}
$$

Thus if m is an integer, n is not.

4. Square populations.

Wew show that The 1980 population had to be $5^{2}=25$ or $499^{2}=249001$. Let n^{2} be the 1980 population. Then $n^{2}+1000=m^{2}+1$ and $n^{2}+2000=r^{2}$ for some integers m and r. From $m^{2}-n^{2}=999$ we have

$$
(m-n)(m+n)=3^{3} \cdot 37
$$

Since $m-n<m+n$, we conclude that $m-n=1,3,9$ or 27 . The corresponding values of $m+n$ are 999, 333, 111 and 37 , leading to the pairs

$$
(m, n)=(500,499),(168,165),(60,51),(32,5)
$$

respectively. Of these, the only ones for which $n^{2}+2000$ is a square are $(500,499)$ and $(32,5)$. Thus n must be 499 or 5 , and the 1980 population had to be 499^{2} or 5^{2}.

5. An integer valued function.

It suffices to show it for nonnegative integers, because $f(-x)=-f(x)$. Here is a proof by induction. $f(0)=0$ is an integer. Suppose that $f(n)$ is an integer. Then

$$
\begin{aligned}
f(n+1) & =\frac{1}{5}(n+1)^{5}+\frac{1}{3}(n+1)^{3}+\frac{7}{15}(n+1) \\
& =\frac{1}{5}\left(n^{5}+5 n^{4}+10 n^{3}+10 n^{2}+5 n+1\right)+\frac{1}{3}\left(n^{3}+3 n^{2}+3 n+1\right)+\frac{7}{15}(n+1) \\
& =\left(\frac{1}{5} n^{5}+\frac{1}{3} n^{3}+\frac{7}{15} n\right)+\left(n^{4}+2 n^{3}+2 n^{2}+n\right)+\left(n^{2}+n\right)+\left(\frac{1}{5}+\frac{1}{3}+\frac{7}{15}\right)
\end{aligned}
$$

which is again an integer. By induction, $f(n)$ is an integer for all integers $n \geq 0$.

6. A convergent series.

We may write

$$
1+\frac{1}{k^{2}+2 k}=\frac{(k+1)^{2}}{k(k+2)}
$$

so

$$
\ln \left(1+\frac{1}{k^{2}+2 k}\right)=\ln \frac{(k+1)^{2}}{k(k+2)}=[\ln (k+1)-\ln k]-[\ln (k+2)-\ln (k+1)]
$$

and the series telescopes:

$$
\begin{aligned}
\sum_{k=1}^{n} \ln \left(2+\frac{1}{k^{2}+2 k}\right) & =\sum_{k=1}^{n}([\ln (k+1)-\ln k]-[\ln (k+2)-\ln (k+1)]) \\
& =[\ln 2-\ln 1]-[\ln (n+2)-\ln (n+1)] \\
& =\ln 2-\ln \left(\frac{n+2}{n+1}\right)
\end{aligned}
$$

which converges to $\ln 2$ as $n \rightarrow \infty$

7. Multiplying two arithmetic sequences.

The seventh term is 280 . Write the first three terms of the arithmetic sequences as $a-d, a, a+d$ and $b-e, b, b+e$. Then $1216=(a-d)(b-e)=a b-b d-a e+d e, 1360=a b$, and $1384=(a+d)(b+e)=a b+b d+a e+d e$. Adding the first and third of these equations and dividing by 2 gives $a b+d e=1300$, whence $d e=-60$, and $b d+a e=84$. The seventh terms of the arithmetic sequences are $a+5 d$ and $b+5 e$, so the seventh term of our product sequence is

$$
(a+5 d)(b+5 e)=a b+5(b d+a e)+25 d e=1360+(5)(84)+25(-60)=280 .
$$

8. Probability that it is divisible by 11.

The probability is $11 / 126$. There are 9 ! integers in which each of the nine digits occurs exactly once. We need to count those divisible by 11 . Write the number

$$
n=a_{8} 10^{8}+a_{7} 10^{7}+a_{6} 10^{6}+a_{5} 10^{5}+a_{4} 10^{4}+a_{3} 10^{3}+a_{2} 10^{2}+a_{1} 10+a_{0} .
$$

Modulo 11,

$$
\begin{aligned}
n & \equiv a_{8}(-1)^{8}+a_{7}(-1)^{7}+a_{6}(-1)^{6}+a_{5}(-1)^{5}+a_{4}(-1)^{4}+a_{3}(-1)^{3}+a_{2}(-1)^{2}+a_{1}(-1)+a_{0} \\
& =(-1)\left(a_{7}+a_{5}+a_{3}+a_{1}\right)+\left(a_{8}+a_{6}+a_{4}+a_{2}+a_{0}\right),
\end{aligned}
$$

so n is divisible by 11 if and only if $A \equiv B \quad(\bmod 11)$, where $A=a_{1}+a_{3}+a_{5}+a_{7}$ and $B=a_{0}+a_{2}+a_{4}+a_{6}+a_{8}$. Then we have $A+B=45$ and we need $A-B=$ $11 k$ for some integer k. These two conditions imply $2 A=45+11 k$ and $2 B=45-$ $11 k$. We see that k must be odd and $|k|<4$. The possible values for $2 A$ then are $12,34,56,78$. It is easy to see that neither 6 nor 78 can occur, so A is 17 or 28. There are 9 possible sets $\left\{a_{1}, a_{3}, a_{5}, a_{7}\right\}$ with sum equal to 17 , and 2 with sum 28 . They are $\{1,2,5,9\},\{1,2,6,8\},\{1,3,4,9\},\{1,3,5,8\},\{1,3,6,7\},\{1,4,5,7\},\{2,3,4,8\},\{2,3,5,7\}$, $\{2,4,5,6\},\{4,7,8,9\},\{5,6,8,9\}$. Thus, there are 11 choices for the set of 4 digits in A, and the other 5 digits go into B. This gives us $11(4!)(5!)$ permutations of the 9 digits yielding a multiple of 11 , and the desired probability is

$$
\frac{11(4!)(5!)}{9!}=\frac{11 \cdot 4 \cdot 3 \cdot 2}{6 \cdot 7 \cdot 8 \cdot 9}=\frac{11}{126} .
$$

9. Length of a segment.

We show that $A C=\sqrt[3]{2}$. Let $x=A C, y=B C$, and $z=B D$. By the law of sines,

$$
\frac{z}{\sin B C D}=\frac{1}{\sin 30^{\circ}}=2
$$

and

$$
x=\frac{x}{\sin 90^{\circ}}=\frac{1}{\sin \left(180^{\circ}-B C D\right)}=\frac{1}{\sin B C D}=\frac{2}{z} .
$$

By the law of cosines applied to triangle $A B D$ we have $(1+x)^{2}=1^{2}+z^{2}-2 z \cos 120^{\circ}=$ $1+z^{2}+z$. Substitution of $x=2 / z$ gives $(1+2 / z)^{2}=1+z+z^{2}$; i.e., $(z+1)\left(z^{3}-4\right)=0$. The only positive real root of this equation is $z=\sqrt[3]{4}$, and hence $x=2 / z=\sqrt[3]{2}$.

SECOND SOLUTION

Using the law of cosines appiied to angle $B C D$ in triangle $B C D$ we obtain

$$
\begin{equation*}
z^{2}=1+y^{2}+2 y^{2} / x \tag{1}
\end{equation*}
$$

Apply the law of cosines to angle B in the triangle $A B D$ to get

$$
(x+1)^{2}=1^{2}+z^{2}-2 \cdot 1 \cdot z \cos 120^{\circ}=1+z^{2}+z
$$

and thus

$$
\begin{equation*}
x^{2}+2 x=z^{2}+z . \tag{2}
\end{equation*}
$$

Substitute $y^{2}=x^{2}-1$ (Pythagorean Theorem) into (1) to get $z^{2}=x^{2}+2\left(x^{2}-1\right) / x$, so

$$
\begin{equation*}
z^{2}=x^{2}+2 x-2 / x . \tag{3}
\end{equation*}
$$

From (2) and (3) it follows that $z=2 / x$. Substitute $z=2 / x$ into (3), giving

$$
\left(\frac{2}{x}\right)^{2}=x^{2}+2 x-\frac{2}{x} .
$$

Now multiply both members by x^{2} to get $4=x^{4}+2 x^{3}-2 x$; i.e., $\left(x^{3}-2\right)(x+2)=0$. As x is positive it follows that $x=\sqrt[3]{2}$

10. 2019 sums of consecutive integers .

The smallest is $N=3^{100} \cdot 5^{4} \cdot 7 \cdot 11$. We note that

$$
N=a+(a+1)+\cdots+(a+n)=(n+1)(2 a+n) / 2 \Longleftrightarrow 2 N=(n+1)(2 a+n) .
$$

Moreover, exactly one of $n+1$ and $2 a+n$ is odd, and each factor is greater than 1. Conversely, every odd divisor d of $2 N$ greater than 1 uniquely determines values of n and a so that $(n+1)(2 a+n)=2 N$ and d is one of $n+1$ and $(2 a+n)$. We seek the smallest value of N which has exactly 2019 odd divisors greater than 1, and so has exactly 2020 odd divisors. If $N=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ where the p_{j} are odd primes, then the number of odd divisors of N is $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)$, so we want $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{k}+1\right)=2020=(2)(2)(5)(101)$. There are exactly 11 factorizations of 2020: (2020), (1010•2), (505•4), (505•2•2), (404•5), (202•10), (202•5•2), (101•20), (101•10•2), (101•5•4), (101•5•2•2). Each corresponds to an odd number N with 2020 divisors. They are $p_{1}^{2019}, p_{1}^{1009} p_{2}, p_{1}^{504} p_{2}^{3}, p_{1}^{504} p_{2} p_{3}, p_{1}^{403} p_{2}^{4}, p_{1}^{201} p_{2}^{9}$, $p_{1}^{201} p_{2}^{4} p_{3}, p_{1}^{100} p_{2}^{19}, p_{1}^{100} p_{2}^{9} p_{3}, p_{1}^{100} p_{2}^{4} p_{3}^{3}, p_{1}^{100} p_{2}^{4} p_{3} p_{4}$. With $p_{1}=3, p_{2}=5, p_{3}=7$, and $p_{4}=11$, these eleven values of N are in decreasing order, and the smallest is $3^{100} \cdot 5^{4} \cdot 7 \cdot 11$.

