1. Multiples of 23.

Well, $3^{n} 2^{3 n}-1=3^{n} 8^{n}-1=24^{n}-1$, and this is divisible by $24-1$ because $x^{n}-1=$ $(x-1)\left(x^{n-1}+x^{n-2}+\cdots+1\right)$ is divisible by $x-1$ for every n.

2. The 2018th term.

We will show that $x_{2018}^{2}-y_{2018}=2$. We prove by induction that $y_{n}=x_{n}^{2}-2$ for all n. For $n=0$ this is given. Suppose that $y_{k}=x_{k}^{2}-2$. Then

$$
\begin{aligned}
y_{k+1} & =y_{k}^{3}-3 y_{k} \\
& =\left(x_{k}^{2}-2\right)^{3}-3\left(x_{k}^{2}-2\right) \\
& =x_{k}^{6}-6 x_{k}^{4}+12 x_{k}^{2}-8-3 x_{k}^{2}+6 \\
& =x_{k}^{6}-6 x_{k}^{4}+9 x_{k}^{2}-2 \\
& =\left(x_{k}^{3}-3 x_{k}\right)^{2}-2 \\
& =x_{k+1}^{2}-2 .
\end{aligned}
$$

By the induction principle, $y_{n}=x_{n}^{2}-2$ for all n, and in particular, $x_{2018}^{2}-y_{2018}=2$

3. Sums of fourth powers.

A general identity of which the given equations are special cases is

$$
a^{4}+b^{4}+(a+b)^{4}=2\left(a^{2}+a b+b^{2}\right)^{2}
$$

This identity is readily verified by expansion. How to find it? That the left-hand members are of the form $a^{4}+b^{4}+(a+b)^{4}$ one notices rather readily. One may also notice that the right-hand members have the form $2\left(a^{2}+a b+b^{2}\right)^{2}$; otherwise, on expanding

$$
\begin{equation*}
\frac{1}{2}\left(a^{4}+b^{4}+(a+b)^{4}\right)=a^{4}+2 a^{3} b+3 a^{2} b^{2}+2 a b^{3}+b^{4} \tag{1}
\end{equation*}
$$

it is natural to compare this with

$$
\begin{equation*}
\left(a^{2}+x+b^{2}\right)^{2}=a^{4}+2 a^{2} x+\left(x^{2}+2 a^{2} b^{2}\right)+2 b^{2} x+b^{4} \tag{2}
\end{equation*}
$$

For the right-hand members of (1) and (2) to agree, we need

$$
2 a^{2} x+\left(x^{2}+2 a^{2} b^{2}\right)+2 b^{2} x=2 a^{3} b+3 a^{2} b^{2}+2 a b^{3}
$$

and one quickly sees that $x=a b$ does the job.

4. Each face occurs twice..

The probability is $\frac{5^{2} \cdot 7 \cdot 11}{2^{8} \cdot 3^{7}}$. There are 6^{12} possible outcomes of the 12 rolls. The number in which each face occurs exactly twice is

$$
\binom{12}{2}\binom{10}{2}\binom{8}{2}\binom{6}{2}\binom{4}{2}\binom{2}{2}=\frac{12!}{10!2!} \cdot \frac{10!}{8!2} \cdot \frac{8!}{6!2!} \cdot \frac{6!}{4!2!} \cdot \frac{4!}{2!2!} \cdot \frac{2!}{2!}=\frac{12!}{2^{6}},
$$

so the desired probability is

$$
\begin{aligned}
\frac{12!}{2^{6} \cdot 6^{12}} & =\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{2^{18} \cdot 3^{12}} \\
& =\frac{2^{2} \cdot 3 \cdot 11 \cdot 2 \cdot 5 \cdot 3^{2} \cdot 2^{3} \cdot 7 \cdot 2 \cdot 3 \cdot 5 \cdot 2^{3} \cdot 3}{2^{18} \cdot 3^{12}} \\
& =\frac{2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11}{2^{18} \cdot 3^{12}}=\frac{5^{2} \cdot 7 \cdot 11}{2^{8} \cdot 3^{7}} .
\end{aligned}
$$

(Multiplied out this is $\frac{1925}{559872}$, or about 0.00344 .)

5. A subset of the first 2018 positive integers.

Suppose, on the contrary, that there are no two elements of B which differ by 31. Then the set $C=B+31=\{b+31: b \in B\}$ has 1025 elements, none of which is in B, and at most 31 of which are greater than 2018. $(2018+31,2017+31, \ldots 1988+31)$. Thus at least $1025-31=994$ elements of C are in $S \backslash B$. But then B and $S \backslash B$ together have at least $994+1025=2019$ elements, all of which are in S, contradicting that S has just 2018 elements. Thus B does have two elements which differ by 31 .

6. Area of a quadrilateral.

The area of $A B C D$ is 506. Let P be the point of intersection of the diagonals. In general, let $(X Y Z)$ denote the area of triangle $X Y Z$. Let h_{D} be the altitude from D to $A C$, and h_{B} the altitude from B to $A C$. Then

$$
\frac{(A P D)}{(C P D)}=\frac{(A P) h_{D}}{(C P) h_{D}}=\frac{(A P)}{(C P)}, \text { and } \frac{(A B P)}{(C B P)}=\frac{(A P) h_{B}}{(C P) h_{B}}=\frac{(A P)}{(C P)}
$$

so

$$
\frac{80}{(C P D)}=\frac{(A P D)}{(C P D)}=\frac{(A P)}{(C P)}=\frac{(A B P)}{(C B P)}=\frac{150}{180}=\frac{5}{6} .
$$

Thus $(C P D)=(80)(6 / 5)=96$, and the area of the quadrilateral is $180+150+80+96=506$.

7. A quadratic equation with integral roots.

They are $r=-\frac{1}{7}$ and $r=1$. We first show that these values of r work. If $r=-\frac{1}{7}$ the equation becomes

$$
-\frac{1}{7} x^{2}+\frac{6}{7} x-\frac{8}{7}=0
$$

which is equivalent to $x^{2}-6 x+8=0$, and the roots are 2 and 4 . If $r=1$ the equation is $x^{2}+2 x=0$, which has roots 0 and -2 . It remains to show that these are the only such values of r. Suppose the equation has integer roots m and n. Then

$$
(x-m)(x-n)=x^{2}+\left(1+\frac{1}{r}\right) x+\left(1-\frac{1}{r}\right)
$$

from which we see that $m n=1-\frac{1}{r}$ and $-m-n=1+\frac{1}{r}$. Adding these two equations we obtain $m n-m-n=2$, and thus

$$
(m-1)(n-1)=m n-m-n+1=3 .
$$

It follows that $\{m-1, n-1\}=\{3,1\}$ or $\{-3,-1\}$. In the first case $\{m, n\}=\{4,2\}$ and we get $r=-\frac{1}{7}$. In the second case $\{m, n\}=\{-2,0\}$ and $r=1$.

8. $2018+x y$ is a perfect square.

No such four integers exist. Consider any four distinct positive integers, and look at things modulo 4. Every square is either 0 or $1 \bmod 4$ and 2018 is $2 \bmod 4$, so we need the product of each two of our four integers to be 2 or $3 \bmod 4$. Then we cannot have two evens among our four, for their product would be $0 \bmod 4$. Thus at least three of the four must be odd. Some two of these three are congruent $\bmod 4$, so their product is $1 \bmod 4$, and this added to 2018 would be $3 \bmod 4$ and therefore not a square. Thus no four integers have the desired property.

9. A max/min problem.

We show that the maximum value is $1 / 4$. Note that $f(1 / 2,1 / 2,1 / 2)=1 / 4$, and we need only show that there are no larger values. Suppose, on the contrary, that for some (x, y, z) we had $f(x, y, z)>1 / 4$. Then

$$
x-y^{2}>\frac{1}{4}, \quad y-z^{2}>\frac{1}{4} \quad \text { and } \quad z-x^{2}>\frac{1}{4} .
$$

Adding these three inequalities, we find that

$$
(x+y+z)-\left(x^{2}+y^{2}+z^{2}\right)>\frac{3}{4}
$$

i.e.,

$$
\left(x^{2}-x\right)+\left(y^{2}-y\right)+\left(z^{2}-z\right)+\frac{3}{4}<0 .
$$

But this implies that

$$
\left(x^{2}-x+\frac{1}{4}\right)+\left(y^{2}-y+\frac{1}{4}\right)+\left(z^{2}-z+\frac{1}{4}\right)<0
$$

i.e., that

$$
\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}+\left(z-\frac{1}{2}\right)^{2}<0
$$

which is obviously impossible. Thus $f(x, y, z)$ takes no values greater than $1 / 4$

10. A logarithmic inequality .

The desired inequality is equivalent to

$$
a(\ln a-\ln c)+b(\ln b-\ln d) \geq 0=(a+b)-(c+d)
$$

i.e., to

$$
a \ln (a / c)+b \ln (b / d) \geq(a-c)+(b-d)
$$

For this it suffices to show that

$$
a \ln (a / c) \geq a-c \quad \text { and } \quad b \ln (b / d) \geq b-d ;
$$

i.e., to show that

$$
\begin{equation*}
\frac{a}{c} \ln \left(\frac{a}{c}\right) \geq \frac{a}{c}-1 \quad \text { and } \quad \frac{b}{d} \ln \left(\frac{b}{d}\right) \geq \frac{b}{d}-1 . \tag{1}
\end{equation*}
$$

We show that for all $x>0$,

$$
\begin{equation*}
x \ln x \geq x-1 \tag{2}
\end{equation*}
$$

and (1) follows. Let $f(x)=x \ln x-x+1$ for $x>0$. Then $f(1)=0$ and $f^{\prime}(x)=\ln x$, which is negative in $(0,1)$ and positive for $x>1$, showing that $f(x)>0$ in $(0,1)$ and in $(1, \infty)$. This proves (2), and therefore (1).

