Solutions, 2016 NCS/MAA TEAM COMPETITION, page 1 of 4

1. A geometric progression.

The unique solution is x = 1/3. We have

$$\frac{8^{2x}}{4^{3x-1}} = \frac{16}{8^{2x}},$$

 \mathbf{SO}

$$\frac{2^{6x}}{2^{6x-2}} = \frac{2^4}{2^{6x}}; \quad 2^2 = 2^{4-6x}.$$

Then 6x = 2, and x = 1/3.

2. A 2016 evaluation

We show that $x^{3} + 1/x^{3} = 2015\sqrt{2018}$. We have

$$\left(x+\frac{1}{x}\right)^2 = x^2+2+\frac{1}{x^2} = 2018,$$

so $x + 1/x = \sqrt{2018}$. Then

$$\left(x+\frac{1}{x}\right)^3 = 2018\sqrt{2018} = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = x^3 + \frac{1}{x^3} + 3\left(x+\frac{1}{x}\right) = x^3 + \frac{1}{x^3} + 3\sqrt{2018}$$

and $x^3 + 1/x^3 = 2018\sqrt{2018} - 3\sqrt{2018} = 2015\sqrt{2018}$.

3. Some cubic polynomials.

They are x^3 , $x^3 - ax^2$ for arbitrary $a \neq 0$, and $x^3 + x^2 - x - 1$.

From $x^3 - ax^2 + bx - c = (x - a)(x - b)(x - c)$ we have

 $a+b+c=a,\tag{1}$

$$ab + ac + bc = b, (2)$$

and

$$abc = c.$$
 (3)

From (1) we see that b + c = 0, so (2) reduces to bc = b, which implies that b = 0 or c = 1. If b = 0, then c = 0 as well, and all three conditions are satisfied. This gives us x^3 and $x^3 - ax^2$ for arbitrary $a \neq 0$. If $b \neq 0$ then c = 1, and (1) implies b = -1 and (3) implies a = -1. This gives us the solution $x^3 + x^2 - x - 1$. It is easy to check that each of x^3 , $x^3 - ax^2$ and $x^3 + x^2 - x - 1$ satisfies the specified condition.

4. A sum of squared sines.

The sum is 45.5. Pair the terms up as follows:

$$S = \sin^{2} 0^{\circ} + \sin^{2} 90^{\circ} + \sin^{2} 1^{\circ} + \sin^{2} 89^{\circ} + \sin^{2} 2^{\circ} + \sin^{2} 88^{\circ} + \cdots + \sin^{2} 44^{\circ} + \sin^{2} 46^{\circ} + \sin^{2} 45^{\circ}.$$

Because $\sin^2(90^\circ - \theta) = \cos^2 \theta$, each of the pairs $\sin^2 n^\circ + \sin^2(90 - n)^\circ = \sin^2 n^\circ + \cos^2 n^\circ = 1$ for $0 \le n \le 44$. Thus we have

$$S = 45 + \sin^2 45^\circ = 45 + \frac{1}{2}.$$

5. Lots of powers of 2.

Because $|1 - \sqrt{3}| < 1$, we have $0 < (1 - \sqrt{3})^{2n} < 1$ for all positive integers n. Note that $(1 + \sqrt{3})^{2n} = r + s\sqrt{3}$ for some integers r and s, and that $(1 - \sqrt{3})^{2n} = r - s\sqrt{3}$. Thus

$$(1+\sqrt{3})^{2n} + (1-\sqrt{3})^{2n} = 2r = \left\lceil (1+\sqrt{3})^{2n} \right\rceil$$

Now, $(1 \pm \sqrt{3})^2/2 = 2 \pm \sqrt{3}$, so $(1 \pm \sqrt{3})^{2n}/2^n = (2 \pm \sqrt{3})^n = t \pm u\sqrt{3}$ for some integers t and u. Then

$$\frac{\left\lceil (1+\sqrt{3})^{2n} \right\rceil}{2^n} = \frac{2r}{2^n} = \frac{(1+\sqrt{3})^{2n}}{2^n} + \frac{(1-\sqrt{3})^{2n}}{2^n} = 2t$$

showing that $\lceil (1+\sqrt{3})^{2n} \rceil/2^{n+1} = t$, an integer.

6. Sides of a triangle.

The side lengths are $24/\sqrt{15}$, $16/\sqrt{15}$ and $32/\sqrt{15}$. Let a, b, c be the sides corresponding to altitudes 4, 6 and 3, respectively. Then 4a = 6b = 3c, each being twice the area of te triangle. The area of the triangle is also given by $\sqrt{s(s-a)(s-b)(s-c)}$, where

$$s = \frac{1}{2}(a+b+c) = \frac{1}{2}\left(a+\frac{2}{3}a+\frac{4}{3}a\right) = \frac{3}{2}a.$$

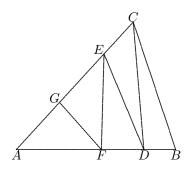
Equating the two expressions for the area we have

$$2a = \sqrt{\left(\frac{3}{2}a\right)\left(\frac{1}{2}a\right)\left(\frac{5}{6}a\right)\left(\frac{1}{6}a\right)} = \frac{a^2}{12}\sqrt{15}.$$

Thus $a = 24/\sqrt{15}$, $b = 2a/3 = 16/\sqrt{15}$, and $c = 4a/3 = 32/\sqrt{15}$.

7. Five triangles of equal area.

We show that FD = 8. Triangle ADC is 4/5 of the area of ABC and they have the same altitude from the base along AB, so AD = (4/5)(AB) = 24. Similarly triangle FED has 1/3 the area of AED and they have the same altitude from the base on AD. Therefore FD = (1/3)(AD) = (1/3)(24) = 8.



8. Divisible by 2^{2016} .

<u>Yes</u>, there is such an integer. We show, by induction, that for every positive integer n, there is an n-digit integer N, each digit of which is 6 or 7, which is divisible by 2^n . With n = 1 we take N = 6. We now show that if N is a k-digit number, each digit 6 or 7, which is divisible by 2^k , then one of the two numbers obtained by putting a 6 or a 7 in front of N will be divisible by 2^{k+1} . For example, from 6 we go to 76, divisible by 4, to 776, divisible by 8.

So, let N be a k-digit number, each digit 6 or 7, and divisible by 2^k . We may write $N = 2^k \cdot r$. The integer obtained by putting 6 or 7 in front of N is $2^k \cdot r + 6 \cdot 10^k$ or $2^k \cdot r + 7 \cdot 10^k$, respectively. If r is even, then $2^k \cdot r + 6 \cdot 10^k$ is divisible by 2^{k+1} . If r is odd, then $2^k \cdot r + 7 \cdot 10^k = 2^k \cdot r + 2^k \cdot 7 \cdot 5^k = 2^k(r + 7 \cdot 5^k)$, which is divisible by 2^{k+1} because $r + 7 \cdot 5^k$ is even. By induction, the claim is proved.

9. All terms integers?

We show that every term is an integer. Clear the recursion of fractions to get $a_n a_{n-2} = a_{n-1}^2 + 13$, and then also $a_{n+1}a_{n-1} = a_n^2 + 13$. Subtracting the first of these from the second gives $a_{n+1}a_{n-1} - a_n a_{n-2} = a_n^2 - a_{n-1}^2$, which we rewrite $a_n^2 + a_n a_{n-2} = a_{n-1}^2 + a_{n-1}a_{n+1}$. With a change of notation,

 $a_k(a_k + a_{k-2}) = a_{k-1}(a_{k-1} + a_{k+1}).$

Consider this last equation now for $3 \le k \le n$:

$$a_{3}(a_{3} + a_{1}) = a_{2}(a_{2} + a_{4})$$

$$a_{4}(a_{4} + a_{2}) = a_{3}(a_{3} + a_{5})$$

$$a_{5}(a_{5} + a_{3}) = a_{4}(a_{4} + a_{6})$$

$$\vdots$$

$$a_{n-1}(a_{n-1} + a_{n-3}) = a_{n-2}(a_{n-2} + a_{n})$$

$$a_{n}(a_{n} + a_{n-2}) = a_{n-1}(a_{n-1} + a_{n+1}).$$

Equating the product of the left-hand members with the product of the right-hand members we obtain

$$(a_3a_4\cdots a_n)(a_3+a_1)(a_4+a_2)\cdots (a_{n-1}+a_{n-3})(a_n+a_{n-2}) = (a_2a_3\cdots a_{n-1})(a_2+a_4)(a_3+a_5)\cdots (a_{n-2}+a_n)(a_{n-1}+a_{n+1}).$$

Canceling common factors leaves

$$a_n(a_3 + a_1) = a_2(a_{n-1} + a_{n+1}).$$

The initial terms are $a_1 = 1$, $a_2 = 7$ and $a_3 = 62$, so $63a_n = 7a_{n-1} + 7a_{n+1}$. Thus, $a_{n+1} = 9a_n - a_{n-1}$, from which it is clear that all terms are integers.

10. An inequality.

We have

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2}) = (a+b)((a-b)^{2} + ab) \ge (a+b)(ab).$$

Similarly, $b^3 + c^3 \ge (b+c)(bc)$ and $c^3 + a^3 \ge (c+a)(ca)$. Adding these three inequalities, we obtain

$$2(a^{3} + b^{3} + c^{3}) \ge a^{2}b + ab^{2} + b^{2}c + bc^{2} + c^{2}a + ca^{2}.$$

Then

$$a^{3} + b^{3} + c^{3} \ge a^{2} \left(\frac{b+c}{2}\right) + b^{2} \left(\frac{a+c}{2}\right) + c^{2} \left(\frac{a+b}{2}\right)$$
$$\ge (a^{2})\sqrt{bc} + (b^{2})\sqrt{ac} + (c^{2})\sqrt{ab},$$

where we have used the AM,GM inequality in the last step.