1. A geometric progression.

The unique solution is $x=1 / 3$. We have

$$
\frac{8^{2 x}}{4^{3 x-1}}=\frac{16}{8^{2 x}}
$$

so

$$
\frac{2^{6 x}}{2^{6 x-2}}=\frac{2^{4}}{2^{6 x}} ; \quad 2^{2}=2^{4-6 x}
$$

Then $6 x=2$, and $x=1 / 3$.

2. A 2016 evaluation

We show that $x^{3}+1 / x^{3}=2015 \sqrt{2018}$. We have

$$
\left(x+\frac{1}{x}\right)^{2}=x^{2}+2+\frac{1}{x^{2}}=2018
$$

so $x+1 / x=\sqrt{2018}$. Then

$$
\left(x+\frac{1}{x}\right)^{3}=2018 \sqrt{2018}=x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}=x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)=x^{3}+\frac{1}{x^{3}}+3 \sqrt{2018},
$$

and $x^{3}+1 / x^{3}=2018 \sqrt{2018}-3 \sqrt{2018}=2015 \sqrt{2018}$.

3. Some cubic polynomials.

They are $x^{3}, x^{3}-a x^{2}$ for arbitrary $a \neq 0$, and $x^{3}+x^{2}-x-1$.
From $x^{3}-a x^{2}+b x-c=(x-a)(x-b)(x-c)$ we have

$$
\begin{gather*}
a+b+c=a \tag{1}\\
a b+a c+b c=b, \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
a b c=c . \tag{3}
\end{equation*}
$$

From (1) we see that $b+c=0$, so (2) reduces to $b c=b$, which implies that $b=0$ or $c=1$. If $b=0$, then $c=0$ as well, and all three conditions are satisfied. This gives us x^{3} and $x^{3}-a x^{2}$ for arbitrary $a \neq 0$. If $b \neq 0$ then $c=1$, and (1) implies $b=-1$ and (3) implies $a=-1$. This gives us the solution $x^{3}+x^{2}-x-1$. It is easy to check that each of $x^{3}, x^{3}-a x^{2}$ and $x^{3}+x^{2}-x-1$ satisfies the specified condition.

4. A sum of squared sines.

The sum is 45.5 . Pair the terms up as follows:

$$
\begin{aligned}
S & =\sin ^{2} 0^{\circ}+\sin ^{2} 90^{\circ} \\
& +\sin ^{2} 1^{\circ}+\sin ^{2} 89^{\circ} \\
& +\sin ^{2} 2^{\circ}+\sin ^{2} 88^{\circ} \\
& +\cdots \\
& +\sin ^{2} 44^{\circ}+\sin ^{2} 46^{\circ} \\
& +\sin ^{2} 45^{\circ} .
\end{aligned}
$$

Because $\sin ^{2}\left(90^{\circ}-\theta\right)=\cos ^{2} \theta$, each of the pairs $\sin ^{2} n^{\circ}+\sin ^{2}(90-n)^{\circ}=\sin ^{2} n^{\circ}+\cos ^{2} n^{\circ}=1$ for $0 \leq n \leq 44$. Thus we have

$$
S=45+\sin ^{2} 45^{\circ}=45+\frac{1}{2}
$$

5. Lots of powers of 2 .

Because $|1-\sqrt{3}|<1$, we have $0<(1-\sqrt{3})^{2 n}<1$ for all positive integers n. Note that $(1+\sqrt{3})^{2 n}=r+s \sqrt{3}$ for some integers r and s, and that $(1-\sqrt{3})^{2 n}=r-s \sqrt{3}$. Thus

$$
(1+\sqrt{3})^{2 n}+(1-\sqrt{3})^{2 n}=2 r=\left\lceil(1+\sqrt{3})^{2 n}\right\rceil
$$

Now, $(1 \pm \sqrt{3})^{2} / 2=2 \pm \sqrt{3}$, so $(1 \pm \sqrt{3})^{2 n} / 2^{n}=(2 \pm \sqrt{3})^{n}=t \pm u \sqrt{3}$ for some integers t and u. Then

$$
\frac{\left\lceil(1+\sqrt{3})^{2 n}\right\rceil}{2^{n}}=\frac{2 r}{2^{n}}=\frac{(1+\sqrt{3})^{2 n}}{2^{n}}+\frac{(1-\sqrt{3})^{2 n}}{2^{n}}=2 t
$$

showing that $\left\lceil(1+\sqrt{3})^{2 n}\right\rceil / 2^{n+1}=t$, an integer.

6. Sides of a triangle.

The side lengths are $24 / \sqrt{15}, 16 / \sqrt{15}$ and $32 / \sqrt{15}$. Let a, b, c be the sides corresponding to altitudes 4,6 and 3 , respectively. Then $4 a=6 b=3 c$, each being twice the area of te triangle. The area of the triangle is also given by $\sqrt{s(s-a)(s-b)(s-c)}$, where

$$
s=\frac{1}{2}(a+b+c)=\frac{1}{2}\left(a+\frac{2}{3} a+\frac{4}{3} a\right)=\frac{3}{2} a .
$$

Equating the two expressions for the area we have

$$
2 a=\sqrt{\left(\frac{3}{2} a\right)\left(\frac{1}{2} a\right)\left(\frac{5}{6} a\right)\left(\frac{1}{6} a\right)}=\frac{a^{2}}{12} \sqrt{15} .
$$

Thus $a=24 / \sqrt{15}, b=2 a / 3=16 / \sqrt{15}$, and $c=4 a / 3=32 / \sqrt{15}$.

7. Five triangles of equal area.

We show that $F D=8$. Triangle $A D C$ is $4 / 5$ of the area of $A B C$ and they have the same altitude from the base along $A B$, so $A D=(4 / 5)(A B)=24$. Similarly triangle $F E D$ has $1 / 3$ the area of $A E D$ and they have the same altitude from the base on $A D$. Therefore $F D=(1 / 3)(A D)=(1 / 3)(24)=8$.

8. Divisible by 2^{2016}.

Yes, there is such an integer. We show, by induction, that for every positive integer n, there is an n-digit integer N, each digit of which is 6 or 7 , which is divisible by 2^{n}. With $n=1$ we take $N=6$. We now show that if N is a k-digit number, each digit 6 or 7 , which is divisible by 2^{k}, then one of the two numbers obtained by putting a 6 or a 7 in front of N will be divisible by 2^{k+1}. For example, from 6 we go to 76 , divisible by 4 , to 776 , divisible by 8 .

So, let N be a k-digit number, each digit 6 or 7 , and divisible by 2^{k}. We may write $N=2^{k} \cdot r$. The integer obtained by putting 6 or 7 in front of N is $2^{k} \cdot r+6 \cdot 10^{k}$ or $2^{k} \cdot r+7 \cdot 10^{k}$, respectively. If r is even, then $2^{k} \cdot r+6 \cdot 10^{k}$ is divisible by 2^{k+1}. If r is odd, then $2^{k} \cdot r+7 \cdot 10^{k}=2^{k} \cdot r+2^{k} \cdot 7 \cdot 5^{k}=2^{k}\left(r+7 \cdot 5^{k}\right)$, which is divisible by 2^{k+1} because $r+7 \cdot 5^{k}$ is even. By induction, the claim is proved.

9. All terms integers?

We show that every term is an integer. Clear the recursion of fractions to get $a_{n} a_{n-2}=$ $a_{n-1}^{2}+13$, and then also $a_{n+1} a_{n-1}=a_{n}^{2}+13$. Subtracting the first of these from the second gives $a_{n+1} a_{n-1}-a_{n} a_{n-2}=a_{n}^{2}-a_{n-1}^{2}$, which we rewrite $a_{n}^{2}+a_{n} a_{n-2}=a_{n-1}^{2}+a_{n-1} a_{n+1}$. With a change of notation,

$$
a_{k}\left(a_{k}+a_{k-2}\right)=a_{k-1}\left(a_{k-1}+a_{k+1}\right) .
$$

Consider this last equation now for $3 \leq k \leq n$:

$$
\begin{aligned}
a_{3}\left(a_{3}+a_{1}\right) & =a_{2}\left(a_{2}+a_{4}\right) \\
a_{4}\left(a_{4}+a_{2}\right) & =a_{3}\left(a_{3}+a_{5}\right) \\
a_{5}\left(a_{5}+a_{3}\right) & =a_{4}\left(a_{4}+a_{6}\right) \\
\vdots & \\
a_{n-1}\left(a_{n-1}+a_{n-3}\right) & =a_{n-2}\left(a_{n-2}+a_{n}\right) \\
a_{n}\left(a_{n}+a_{n-2}\right) & =a_{n-1}\left(a_{n-1}+a_{n+1}\right) .
\end{aligned}
$$

Equating the product of the left-hand members with the product of the right-hand members we obtain

$$
\begin{aligned}
& \left(a_{3} a_{4} \cdots a_{n}\right)\left(a_{3}+a_{1}\right)\left(a_{4}+a_{2}\right) \cdots\left(a_{n-1}+a_{n-3}\right)\left(a_{n}+a_{n-2}\right) \\
& \quad=\left(a_{2} a_{3} \cdots a_{n-1}\right)\left(a_{2}+a_{4}\right)\left(a_{3}+a_{5}\right) \cdots\left(a_{n-2}+a_{n}\right)\left(a_{n-1}+a_{n+1}\right) .
\end{aligned}
$$

Canceling common factors leaves

$$
a_{n}\left(a_{3}+a_{1}\right)=a_{2}\left(a_{n-1}+a_{n+1}\right) .
$$

The initial terms are $a_{1}=1, a_{2}=7$ and $a_{3}=62$, so $63 a_{n}=7 a_{n-1}+7 a_{n+1}$. Thus, $a_{n+1}=9 a_{n}-a_{n-1}$, from which it is clear that all terms are integers.

10. An inequality.

We have

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)=(a+b)\left((a-b)^{2}+a b\right) \geq(a+b)(a b)
$$

Similarly, $b^{3}+c^{3} \geq(b+c)(b c)$ and $c^{3}+a^{3} \geq(c+a)(c a)$. Adding these three inequalities, we obtain

$$
2\left(a^{3}+b^{3}+c^{3}\right) \geq a^{2} b+a b^{2}+b^{2} c+b c^{2}+c^{2} a+c a^{2} .
$$

Then

$$
\begin{aligned}
a^{3}+b^{3}+c^{3} & \geq a^{2}\left(\frac{b+c}{2}\right)+b^{2}\left(\frac{a+c}{2}\right)+c^{2}\left(\frac{a+b}{2}\right) \\
& \geq\left(a^{2}\right) \sqrt{b c}+\left(b^{2}\right) \sqrt{a c}+\left(c^{2}\right) \sqrt{a b},
\end{aligned}
$$

where we have used the AM,GM inequality in the last step.

