Solutions, 2011 NCS/MAA TEAM COMPETITION, page 1 of 4

Each problem number is followed by an 11-tuple ($a_{10}, a_{9}, a_{8}, a_{7}, a_{6}, a_{5}, a_{4}, a_{3}, a_{2}, a_{1}, a_{0}$), where a_{k} is the number of teams that scored k points on the problem.

1. Units digit of $S_{2011} \cdot(28,1,1,0,1,0,9,2,5,5,24)$

The units digit of S_{2011} is 1 . We show this by observing that $S_{1}=1$ has units digit 1, and that S_{n+10} always has the same units digit as does S_{n}. Modulo 10, the sequence of squares of positive odd integers begins ($1,9,5,9,1$), after which this cycle repeats itself, because $(n+10)^{2}=n^{2}+20 n+100 \equiv n^{2}(\bmod 10)$. Then modulo $10, S_{n+10}-S_{n}$ will always be the sum of 10 consecutive terms in this sequence, which will be

$$
1+9+5+9+1+1+9+5+9+1 \equiv 0
$$

wherever in the sequence one begins. Thus $S_{n+10} \equiv S_{n}(\bmod 10)$.
2. Area of a square. ($60,3,0,2,0,2,1,0,1,0,7$)

The area is $\frac{8}{9} S$. The legs of the right triangle have length $2 \sqrt{S}$, so the hypotenuse is $2 \sqrt{2 S}$. Then the second inscribed square has side $\frac{2 \sqrt{2 S}}{3}$, because the smaller triangles at A and C are also isosceles right triangles. Thus the area of the second inscribed square is $\left(\frac{2 \sqrt{2 S}}{3}\right)^{2}=\frac{8 S}{9}$.

3 Speshul integers. ($31,0,0,2,0,0,4,7,2,0,30$)
Well, of course, every positive integer is speshul. Here are two different ways to get the m and n we need.
(1) To make $m n+1=k m+k n$, start by taking $m=k+1$. Then we want $k n+n+1=$ $k m+k n$; i.e., $n+1=k m$, so $n=k m-1$ does it. Thus: $m=k+1, n=k m-1=k^{2}+k-1$.
(2) Take $m=2 k-1, n=2 k+1$. Then

$$
\frac{m n+1}{m+n}=\frac{4 k^{2}}{4 k}=k .
$$

4. Divisor and remainder. (20,0,2,1,1,1,2,0,0,9,40)

The unique such pair is $(d, r)=(71,52)$. From $904=a d+r, 1259=b d+r$ and $2040=c d+r$ we obtain on subtraction,

$$
355=(b-a) d \quad \text { and } \quad 781=(c-b) d .
$$

Now, $781=(2)(355)+71$, and both 781 and 355 are multiples of d, so 71 is a multiple of d. But 71 is prime, so d can only be 71 (the condition $0<r<d$ requires $d>1$), and then $904=(12)(71)+52$ shows that r must be 52 . One checks that $1259=(17)(71)+52$ and $2040=(28)(71)+52$, so $(d, r)=(71,52)$ is the unique solution.

5. Bigger than 20112?. (18,0,1,0,2,0,2,4,5,6,38)

Such numbers do exist. Let $f(x)=x^{2}+\sqrt{2011-x}$ for $0 \leq x \leq 2011$. It suffices to show that there exists $x \in[0,2011]$ with $f(x)>2011^{2}$. We note that $f(2011)=2011^{2}$, so it suffices to show that $f^{\prime}(x)$ is negative throughout an interval (2011- $\epsilon, 2011$) for some $\epsilon>0$. Well, $f^{\prime}(x)=2 x-1 /(2 \sqrt{2011-x})$, and for $0 \leq x \leq 2011,2 x<4022$. But $1 /(2 \sqrt{2011-x})>4022$ when $1 / \sqrt{2011-x}>8044$; i.e., when $2011-x<1 / 8044^{2}$. Thus, when

$$
2011-\frac{1}{8044^{2}}<x<2011
$$

$f^{\prime}(x)<0$, so $f(x)$ decreases in this interval to the value 2011^{2} at $x=2011$, and hence $f(x)>2011^{2}$ throughout this interval.
6. From 11 to 2011. ($38,1,1,1,0,0,1,2,0,0,32$)

Yes, it can be done in many ways (infinitely many, in fact). A key observation is that with any $n>1, n=(n-1)+1$ can be replaced by $(n-1) \cdot 1=n-1$, so if we obtain any integer larger than 2011, we can step down from there to 2011 in steps of 1 . Thus, one solution is

$$
11=6+5 \rightarrow 30=15+15 \rightarrow 225=10+215 \rightarrow 2150=2149+1 \rightarrow 2149,
$$

etc., down to 2011.
7. Not a perfect square. $(11,0,0,0,0,1,0,2,2,1,59)$

We show that $(n+5)^{2}<a_{n}<(n+6)^{2}$ for all n, and the claim follows. Using the facts that $4<\sqrt{19}<5$ and $9<\sqrt{99}<10$ we have

$$
\begin{aligned}
a_{n} & =\left\lfloor n^{2}+2 \sqrt{19} n+19+2 n+\sqrt{99}\right\rfloor \\
& \leq\left\lfloor n^{2}+12 n+29\right\rfloor \\
& =\left\lfloor(n+6)^{2}-7\right\rfloor \\
& <(n+6)^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
a_{n} & \geq\left\lfloor n^{2}+10 n+28\right\rfloor \\
& =\left\lfloor(n+5)^{2}+3\right\rfloor \\
& >(n+5)^{2} .
\end{aligned}
$$

8. $P(11)=2011$. $(35,1,6,0,1,0,0,0,0,0,33)$

We show that $P(6)=441$. From the fact that $2011=P(11) \geq a_{n} \cdot 11^{n} \geq 11^{n}$ we know that $n \leq 3$ because $11^{3}=1331<2011<11^{4}$. Also, $2011<2 \cdot 11^{3}$, so $a_{3} \leq 1$, and thus if $n=3$ then $a_{3}=1$. We show that $n=3$. If $n \leq 2$, then $P(x)=a_{0}+a_{1} x+a_{2} x^{2} \leq 10+10 x+10 x^{2}$, and $2011=P(11) \leq 10+110+1210<2011$, a contradiction. Thus $n=3, a_{3}=1$, and $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+x^{3}$. Then $2011=P(11)=a_{0}+a_{1} \cdot 11+a_{2} \cdot 11^{2}+1331$, whence $a_{0}+a_{1} \cdot 11+a_{2} \cdot 11^{2}=2011-1331=680$.
Because $0 \leq a_{0}+a_{1} \cdot 11 \leq 10+110=120$, we have $680 \geq a_{2} \cdot 11^{2} \geq 680-120=560$, and therefore $6>680 / 121 \geq a_{2} \geq 560 / 121>4$. Hence $a_{2}=5$, and

$$
2011=a_{0}+a_{1} \cdot 11+5 \cdot 121+1331=a_{0}+11 a_{1}+1936,
$$

so $a_{0}+11 a_{1}=75$. The constraints on a_{0} and a_{1} then determine that $a_{1}=6$ and $a_{0}=9$. Thus $P(x)=9+6 x+5 x^{2}+x^{3}$. Note that this also satisfies $P(1)=21$ (which was given but not used for the solution). Finally, then, $P(6)=9+36+180+216=441$.
9. Fractional part of \sqrt{n}. $(8,0,2,0,0,0,0,0,0,0,66)$

Let r be the integer such that $r-1<\sqrt{n}<r$. If $r=2$, then $n=2$ or 3 and one can easily verify directly that the required inequality holds. So we assume that $r \geq 3$, in which case $(r-1)^{2} \geq r$, and hence $n>r$. Let $k=r^{2}-n$. Then $k>0$ so $k \geq 1$, and we have

$$
x_{n}=\sqrt{n}-\lfloor\sqrt{n}\rfloor=\sqrt{n}-(r-1),
$$

and then

$$
\begin{aligned}
x_{n}+\frac{1}{2 n} & =\sqrt{n}-r+1+\frac{1}{2 n} \\
& =\sqrt{r^{2}-k}-r+1+\frac{1}{2 n} \\
& \leq \sqrt{r^{2}-1}-r+1+\frac{1}{2 n} \\
& \leq \sqrt{r^{2}-1}-r+1+\frac{1}{2 r} \\
& =1-\left(r-\sqrt{r^{2}-1}-\frac{1}{2 r}\right) \\
& =1-\left(\frac{1}{r+\sqrt{r^{2}-1}}-\frac{1}{2 r}\right)<1,
\end{aligned}
$$

q.e.d.
10. Numerator divisible by 2011. ($3,1,0,0,0,0,0,0,0,0,72$)

We rewrite

$$
\begin{aligned}
\frac{p}{q} & =\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{1339}+\frac{1}{1340}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{1340}\right) \\
& =\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{1339}+\frac{1}{1340}\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{670}\right) \\
& =\frac{1}{671}+\frac{1}{672}+\cdots+\frac{1}{1340},
\end{aligned}
$$

Now group these terms in pairs as follows:

$$
\begin{aligned}
\frac{p}{q} & =\left(\frac{1}{671}+\frac{1}{1340}\right)+\left(\frac{1}{672}+\frac{1}{1339}\right)+\cdots+\left(\frac{1}{1005}+\frac{1}{1006}\right) \\
& =\frac{1340+671}{671 \cdot 1340}+\frac{1339+672}{672 \cdot 1339}+\cdots+\frac{1006+1005}{1005 \cdot 1006} \\
& =2011\left(\frac{1}{671 \cdot 1340}+\frac{1}{672 \cdot 1339}+\cdots+\frac{1}{1005 \cdot 1006}\right) \\
& =2011 \frac{r}{s}
\end{aligned}
$$

for some integers r and s, where all prime factors of s are smaller than 2011. We now have $2011 r q=p s, 2011$ is prime, and 2011 does not divide s. Therefore $2011 \mid p$, q.e.d.

