Each problem number is followed by an 11-tuple ($a_{10}, a_{9}, a_{8}, a_{7}, a_{6}, a_{5}, a_{4}, a_{3}, a_{2}, a_{1}, a_{0}$), where a_{k} is the number of teams that scored k points on the problem.

1. $\left\lfloor\log _{3} n\right\rfloor$ is a multiple of $\mathbf{3}$. $(28,7,13,3,5,2,0,1,2,3,9,12)$

The answer is $1338 / 2010=223 / 335$. From the definitions of greatest integer function and of logarithm, we have

$$
\left\lfloor\log _{3} n\right\rfloor=3 k \Longleftrightarrow 3 k \leq \log _{3} n<3 k+1 \Longleftrightarrow 3^{3 k} \leq n<3^{3 k+1}
$$

For $k=0$ we get the integers $\{1,2\}$, and for $k=1$ we get $\{n: 27 \leq n<81\}$. With $k=2$ and the restriction that n be no greater than 2010, we obtain $\{n: 729 \leq n \leq 2010\}$. Thus there are $2+(80-26)+(2010-728)=1338$ integers satisfying the condition, giving a probability of $1338 / 2010=223 / 335$.
2. Find vertices given midpoints. ($55,0,0,0,2,1,1,0,1,1,24$)

The vertices are $A=(-7,-10), B=(9,-4), C=(7,12), D=(-1,8), E=(3,0)$. Regarding points as vectors in the plane, we have

$$
\begin{array}{rlr}
A+B & =2 P \\
B+C & =2 Q \\
C+D & =2 R \\
D+E & =2 S \\
A & +E & =2 T .
\end{array}
$$

The augmented matrix of this system is

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 2 P \\
0 & 1 & 1 & 0 & 0 & 2 Q \\
0 & 0 & 1 & 1 & 0 & 2 R \\
0 & 0 & 0 & 1 & 1 & 2 S \\
1 & 0 & 0 & 0 & 1 & 2 T
\end{array}\right)
$$

Using standard Gaussian elimination on this system we obtain the triangularized matrix

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 2 P \\
0 & 1 & 1 & 0 & 0 & 2 Q \\
0 & 0 & 1 & 1 & 0 & 2 R \\
0 & 0 & 0 & 1 & 1 & 2 S \\
0 & 0 & 0 & 0 & 2 & 2 S-2 R+2 Q-2 P+2 T
\end{array}\right)
$$

Thus

$$
\begin{aligned}
& E=S-R+Q-P+T=(3,0) \\
& D=2 S-E=(-1,8) \\
& C=2 R-D=(7,12) \\
& B=2 Q-C=(9,-4) \\
& A=2 P-B=(-7,-10)
\end{aligned}
$$

3 Real part of $1 /(1-z) \cdot(42,1,0,0,0,0,2,0,0,1,39)$
The real part has constant value $1 / 2$. For $z=x+y i$ with x and y real, let

$$
f(z)=\frac{1}{1-z}=\frac{1}{1-x-y i}=\frac{1-x+y i}{(1-x-y i)(1-x+y i)}=\frac{1-x+y i}{1-2 x+x^{2}+y^{2}}
$$

If $|z|=1$ then $x^{2}+y^{2}=1$, and the real part of $f(z)$ is $(1-x) /(2-2 x)=1 / 2$.
4. Length of a segment. (53, 1, $0,1,2,1,0,2,7,5,13$)

The length $|B E|=\sqrt{3}-1$. Each side of the equilateral triangle has length $2 \sqrt{3}$. Let O be the center of the circle, and F the point of tangency of side $A B$, and K the point of tangency on line DE . Then $O K E F$ is a square of side 1 , so $|B E|=|B F|-1=\sqrt{3}-1$.

5. Sum is $\mathbf{1 / 2 0 1 0}$. $(18,0,1,2,6,2,2,3,0,3,48)$

Two of the several solutions are $(m, n)=(1005,2009)$ and $(1340,4019)$. We use the identity

$$
\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}
$$

to telescope the desired sum:

$$
\sum_{k=m}^{n} \frac{1}{k(k+1)}=\sum_{k=m}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\frac{1}{m}-\frac{1}{n+1}
$$

Thus we seek integers m, n satisfying

$$
\frac{1}{m}-\frac{1}{n+1}=\frac{1}{2010}
$$

Clearing of fractions, collecting terms and rearranging yields the equivalent equation

$$
m n+2011 m-2010 n=2010
$$

and thus

$$
(m-2010)(n+2011)=2010-2010 \cdot 2011=-2010^{2}
$$

so each factorization of -2010^{2} into a product of two integers yields a solution for (m, n) in integers. The solutions given above come from $m-2010=-1005$ and -670 , respectively. Any of the negative factors of 2010^{2} from -1 to -1675 are suitable choices for $m-2010$.

6. Both have value 7. $(28,0,1,1,0,1,0,1,2,0,51)$

It is well-known that f is continuous, and we want to show that there is a number r such that $f(r)+f(7-r)=7$. Let $g(x)=f(x)+f(7-x)$. Then g is continuous and $g(2)=$ $f(2)+f(5)<7<f(3)+f(4)=g(3)$, so by the Intermediate Value Theorem there is a number r between 2 and 3 such that $g(r)=7$; i.e., $f(r)+f(7-r)=7$.
7. Limit of a sequence. $(4,0,1,0,0,2,5,18,4,3,48)$

The limit is $\frac{\pi}{2}(\sin 2-\sin 1)$. Integrate by parts using

$$
u=\operatorname{Arctan} n x, d u=\frac{n}{1+n^{2} x^{2}} d x, d v=\cos x d x, v=\sin x
$$

to get

$$
\begin{aligned}
\int_{1}^{2}(\cos x)(\operatorname{Arctan} n x) d x & =\left.(\operatorname{Arctan} n x)(\sin x)\right|_{1} ^{2}-\int_{1}^{2}(\sin x) \frac{n}{1+n^{2} x^{2}} d x \\
& =(\operatorname{Arctan} 2 n)(\sin 2)-(\operatorname{Arctan} n)(\sin 1)-\int_{1}^{2}(\sin x) \frac{n}{1+n^{2} x^{2}} d x
\end{aligned}
$$

Now

$$
\begin{aligned}
\left.\left\lvert\, \int_{1}^{2}(\sin x) \frac{n}{1+n^{2} x^{2}}\right.\right) d x \mid & \leq \int_{1}^{2}|\sin x| \frac{n}{1+n^{2} x^{2}} d x \leq \int_{1}^{2} \frac{n}{1+n^{2} x^{2}} d x \\
& \leq \int_{1}^{2} \frac{1}{n} d x=\frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Also,

$$
\lim _{n \rightarrow \infty} \operatorname{Arctan} 2 n=\lim _{n \rightarrow \infty} \operatorname{Arctan} n=\frac{\pi}{2}
$$

so the desired limit is

$$
\frac{\pi}{2}(\sin 2-\sin 1)
$$

8. An unbounded sequence. (19,0,1,1,2,4,2,2,2,3,49)

If $a_{0}=7$ the sequence begins $7,44,22,11,116,58,29$, and one may notice that every third term is odd. We show by induction that $a_{3 n}$ is odd for all n, and that $a_{3 n+3}>a_{3 n}$ for all n. As all terms are evidently integers, this will show that the sequence is unbounded.

That a_{0} is odd is given. Suppose that $a_{3 n}=2 k+1$, with $k \geq 3$. Then $a_{3 n+1}=4 k^{2}+4 k-4$, $a_{3 n+2}=2 k^{2}+2 k-2$ and $a_{3 n+3}=k^{2}+k-1$, which is odd because $k(k+1)$ is even. It remains to show that $k^{2}+k-1>2 k+1$, and this is equivalent to $k(k-1)>2$, which is true for all $k \geq 3$.
9. Divisible by 2010. ($16,0,3,0,0,1,0,0,1,1,63$)

We use the fact that $x^{n}-y^{n}$ is always divisible by $x-y$. Observe that $2013-1827=$ $1678-1492=186$, from which it follows that $\left(2013^{n}-1827^{n}\right)-\left(1678^{n}-1492^{n}\right)$ is divisible by $186=31 \cdot 6$, and therefore by 6 . Also, $2013-1678=1827-1492=335$, whence $\left(2013^{n}-1678^{n}\right)-\left(1827^{n}-1492^{n}\right)$ is divisible by 335 . As 6 and 335 are relatively prime, it follows that $1492^{n}-1678^{n}-1827^{n}+2013^{n}$ is divisible by $(6)(335)=2010$.

SECOND SOLUTION

The prime factorization of 2010 is $2 \cdot 3 \cdot 5 \cdot 67$. Modulo $2,1492^{n}-1678^{n}-1827^{n}+2013^{n} \equiv$ $0-0-1+1=0$. Mod 3 we have $1^{n}-1^{n}-0^{n}+0^{n}=0$. Mod 5 we have $2^{n}-3^{n}-2^{n}+3^{n}=0$, and mod 67 we have $18^{n}-3^{n}-18^{n}+3^{n}=0$. It follows that $1492^{n}-1678^{n}-1827^{n}+2012^{n}$ is divisible by $2 \cdot 3 \cdot 5 \cdot 67=2010$.
10. Three real roots. $(7,0,0,0,0,0,0,1,0,3,74)$

Because $c / a<0, a x^{2}+c=0$ has two real roots, $x_{1}=-\sqrt{-c / a}<0$ and $x_{2}=\sqrt{-c / a}>0$. Then $P\left(x_{1}\right)=x_{1}\left(x_{1}^{2}+b\right)=x_{1}(b-c / a)>0$, and $P\left(x_{2}\right)=x_{2}(b-c / a)<0$. Thus $P(x)$ has zeros in $\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right)$ and $\left(x_{2}, \infty\right)$.

SECOND SOLUTION

Note that $P(0)=c$ and $P(-a)=c-a b$. If $a>0$, then $c<0$, and $a b<c<0$ so $c-a b>0$. Thus $-a<0$ while $P(-a)>0$ and $P(0)=c<0$, so there are roots in $(-\infty,-a),(-a, 0)$ and $(0, \infty)$.
If $a<0$, then $a b>c>0$ and $-a>0$. Thus we have $P(-a)=c-a b<0$ while $-a>0$ and $p(0)=c>0$, so there are roots in $(-\infty, 0),(0,-a)$ and $(-a, \infty)$.

