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1. Necklace with 21 Diamonds

A necklace has 21 diamonds. The middle one is the largest, and they taper off in value toward each end.
Beginning from one end, each successive diamond is worth $100 more than the preceding one, until the middle
is reached. Beginning from the other end, each one is worth $150 more than its predecessor. The total value
of the diamonds in the necklace is $47,150. What is the value of the middle diamond?

Solution. The value of the middle diamond is $2,900. Let x be the dollar value of the middle diamond.
Then the values of its ten neighbors on one side are x — 100, z — 200, ...,  — 1000, and those on the other
side are x — 150, x — 300, ..., z — 1500. By pairing each one on one side with the corresponding one on the
other side we may express the total value as

47150 = z + (22 — 250) + (22 — 500) + - - - + (2 — 2500)
=212 — 250(1 +2+3+---+ 10)
=21z — 250 - 55
= 21z — 13750,

so 21z = 47150 4 13750 = 60900, and x = 2900.

2. Square with Perpendicular to a Diagonal

In the square ABC D, the line from a point F on side C'D to a point G on side BC' is perpendicular to the
diagonal AC and intersects it at F. If |AF| = |EG| = 20, determine |DE|. Here, the notation |DE| denotes
the length of side DFE.

Solution. The length |DE| is 5v/2. By the statement of the problem we see that /EFC = /CFG = 90°
and ZFCE = ZFCG = 45°. Therefore EFC and CFG are congruent right isosceles triangles with |FC| =
|EF| = 20/2 = 10. Then |EC| = 10v/2, |AC| = 20 4+ 10 = 30, and |DC| = 30/+/2 = 15/2, from which it
follows that |[DE| = |DC| — |EC| = 5v/2.

3. Area of a Region
Determine the area of the region .S defined by

S={(zy): (2| = 1)*+ (lyl = 1)* < 4}.

Solution. The region is symmetric across the x- and y-axes due to the absolute values, so it suffices to
consider the part of the region in the first quadrant — which is the part of the disk (x — 1)+ (y —1)2 < 4 in
the first quadrant.



This can be subdivided into simpler regions as shown. Region A is a square, with Area(A) = 1. Region B is
a quarter circle, with Area(B) = (1/4) -7 -2% = .

Region C is a right triangle with height 1 and hypotenuse 2, hence Area(C) = v/3/2.
Region D is a sector with radius 2 and central angle 7/6 hence Area(D) = (1/2)(r/6) - 2% = /3.
Adding up, the area in the first quadrant is

1+w+2(\/§/2>+2(7r/3)=1+\/§+5§7

hence, by the four-fold symmetry,

2
Area(S) =4 +4V3 + %

4. Matrix Involution

Show that there are infinitely many 3 x 3 matrices with integer entries such that M? = I, where I is the
3 x 3 identity matrix.

Solution. Let

1 0 0
M=%k -1 0
0 0 1
where k is any integer. We have:
1 0 0 1 0 0 1-1 0 0 1 00
M?*=|k -1 0 k-1 0|=|k-k (-1)-(-=1) 0 |=]010
0 0 1 0 0 1 0 0 1-1 0 0 1

5. Evaluating Polynomials

The monic polynomial f(z) has degree 2021, and f(n) = n for each integer n, 1 < n < 2021. Find f(2022),
and justify your answer.

Solution. The answer is 2022 4 2021!

Since f(x) is monic of degree 2021, the polynomial f(x)— z is also monic and of degree 2021. By hypothesis,
the polynomial f(z) — = has 2021 zeros, namely the integers from 1 to 2021. Thanks to the fundamental
theorem of algebra, and the fact that f(z) — 2 is monic we can write:



2021

f@)—z=J[@-i)=(-1)(z-2)...(z - 2020)(z — 2021).

i=1

Therefore, we have the identity:

2021
fla)y=z+ [[(@=1)
i=1
Now we evaluate for x = 2022:
2021
£(2022) = 2022 + [ (2022 — i) = 2022 + 2021!
i=1
6. Sums of Reciprocals
Let x,y, z be positive real numbers.
. 1 1 1
(a) If z +y+ 2z > 3, does it follow that — + — + — < 37
Ty =z
. 1 1 1
(b) If x + y + z < 3, does it follow that — + — + — > 37
x Yy =z

Solution.

(a) Noj for example, (z,y,2) = (1,2,1/3) hasx +y+ 2z >3 and 1/ + 1/y + 1/2 = 9/2. In fact, the sum of
reciprocals can be made arbitrarily large by taking x = 1, y = 2, and z arbitrarily close to zero.

(b) Yes. First note that, if o is a positive real number, then (o — 1)2 > 0 implies o + 1 > 2« and dividing
by « gives a + (1/a) > 2. Now, suppose z, y, and z are positive, with  + y + z < 3. Then we have

1 1 1 1 1 1
z+y+tz+|—-F+-+-|=lz+- )+ |ly+-)+|2z+-]22+2+2=6,
x Yy z x Y z

1 1 1

<++> >6—(z+y+2) >3
r Yy =z

and so

7. Integer Triangles

Find all (nondegenerate) triangles with integral sides, one side equal to 10, and the cosine of an adjacent
angle equal to —1/5.

Solution. There are three such triangles, namely {10, 25,21}, {10, 14, 8}, {10, 11, 13}.
Let the other two sides be a and b, with a opposite the angle with cosine equal to —1/5. By the law of cosines
we have:

a? = 0% +10% — 2b- 10(—1/5) = b* + 4b + 100.
This implies

a?—b>—4b = 100,
a> = (b+2)? = 100 — 4,
(a+b+2)(a—b—2) = 96.

The two factors on the left in the last equation have the same parity, so both must be even. Moreover, since
the larger factor a + b+ 2 is positive, the smaller factor a — b — 2 must be positive as well. The possible values



for the smaller factor a — b — 2 are 2,4, 6, and 8. The corresponding values for the larger factor a + b+ 2 are
48, 24,16, and 12. Solving the four resulting pairs of simultaneous equations we get

(a,b) = (25,21), (14,8), (11,3), and (10,0).

The last corresponds to a degenerate triangle, so there are exactly three triangles {10, 25,21}, {10, 14,8}, and
{10,11,13}.

8. Bounded Series

Prove that for every integer n > 1,

L S DR
32 752 T T 2n4 1) a4

Solution. The following inequality is satisfied for every positive integer k:
k2> k?—1=(k—1)(k+1).

Consequently, we have:

DU DS SRR SRS SRR S
32 752 T (2n41)2 2.4 4.6 2n(2n+2)

S HED ) ()

where the last identity comes from the fact that for every integer k:

1 1 1 1
(k—1)(k+1)_2<k_1k+1>'

After simplifying (or “telescoping”), we get:

9. Same Difference

Let a1, as,...,as, be 2n distinct integers with n > 1 and 0 < a; < n? for each i. Prove that some three of
the differences a; — a; (with i # j) are equal.

Solution. We assume without loss of generality, that
1§a1<a2<~-~<a2n§n2.

Consider the 2n — 1 differences
A1 — A4, 1§2§2n—1

We want to show that in fact some three of these differences must be equal. If no three of these are equal,
their sum is at least:

n—1
1
1+1+2+2+~-~+(n—1)+(n—1)+n:2(Zi)+n:2~n(n2)+n=712.
=1

But this contradicts the fact that their sum is as, — a1 < n? — 1. Therefore, some three of the differences
a;+1 — a; are equal.



10. Integral Solutions

Consider the system of equations

r+y+z=23, (1)
x5+ 95 + 2% = 33, (2)

Find all of its solutions in integers (with justification) or show that no such solutions exist.

Solution. The are 6 integer solutions (z,y, z) = (0, 1,2) and its permutations. If 2, yo, and zy are integers
satisfying the equations, then they also satisfy (x +y+2)5 — (2° +y° + 2%) = 3% — 33 = 210. The polynomial
in the left-hand side, considered as a polynomial in z, vanishes for x = —y, so z+y is a factor. By symmetry,
x + z and y + z also are factors. From Pascal’s triangle it follows that 5 is also a factor. Thus, for some
polynomial Q(z,y, z) we have, using (1),

53 = 20)(3 = 40)(3 — 20)Q(0,Y0,20) =210 =1 x2x 3 x5 x 7T,

or
(3 — 330)(3 — yo)(3 — ZQ)Q(.TQ,yo,Zo) =210=1x2x3xT.

From (1) we have that either all of xg, yo, 20 are odd, or two are even and one is odd. In the first case, all
of (3 —xg), (3—1yo), (3 — z0) are even, which is impossible based on the prime factorization of 210, so two
of them have to be odd and one even. Moreover, from (1) we see that

(3—20) + (3 —wo0)+(3—2) =6. (3)

Assuming 3 — xg is the even term, we have 3 — xq is one of +2, +6, 14, or +42. The last 4 possibilities can
be excluded since they won’t allow (3) to be satisfied with the remaining factors of 210 (e.g., if 3 — z¢ = 14,
that leaves 3 —yg = £3 and 3 — 29 = £1 or the other way around and (3) can’t be satisfied; similarly for the
other three possibilities). The remaining possibilities with 3 — zy equal to 2 or 6 can be easily checked to
be

24+143=6, 2-3+7=6, —2414+7=6, 6+1—1=6.

These lead to (up to permutations of the order)

xo =1, 90:27 29 = 0,
zo=1, yo =6, 20 = —4,
£L'0:5, y0:27 20:743
33‘0:—3, y0:2, 2’0:4.
Of these the first one clearly satisfies (2) since 1° + 25 4+ 0% = 33. The second possibility would yield

1P+ (6°—45) =1+ (6—4)(6*+6>-44+6%-42+6-4% +4%) > 1+2-5-4* > 33 and similarly for the last
two. Hence only the first possibility (and its permutations) are solutions of our system of equations.



