TWENTY-FOURTH ANNUAL
 NORTH CENTRAL SECTION MAA
 HEUER MEMORIAL TEAM CONTEST

 Solutions

 Solutions}

November 12, 2022

1. Necklace with 21 Diamonds

A necklace has 21 diamonds. The middle one is the largest, and they taper off in value toward each end. Beginning from one end, each successive diamond is worth $\$ 100$ more than the preceding one, until the middle is reached. Beginning from the other end, each one is worth $\$ 150$ more than its predecessor. The total value of the diamonds in the necklace is $\$ 47,150$. What is the value of the middle diamond?

Solution. The value of the middle diamond is $\$ 2,900$. Let x be the dollar value of the middle diamond. Then the values of its ten neighbors on one side are $x-100, x-200, \ldots, x-1000$, and those on the other side are $x-150, x-300, \ldots, x-1500$. By pairing each one on one side with the corresponding one on the other side we may express the total value as

$$
\begin{aligned}
47150 & =x+(2 x-250)+(2 x-500)+\cdots+(2 x-2500) \\
& =21 x-250(1+2+3+\cdots+10) \\
& =21 x-250 \cdot 55 \\
& =21 x-13750,
\end{aligned}
$$

so $21 x=47150+13750=60900$, and $x=2900$.

2. Square with Perpendicular to a Diagonal

In the square $A B C D$, the line from a point E on side $C D$ to a point G on side $B C$ is perpendicular to the diagonal $A C$ and intersects it at F. If $|A F|=|E G|=20$, determine $|D E|$. Here, the notation $|D E|$ denotes the length of side $D E$.

Solution. The length $|D E|$ is $5 \sqrt{2}$. By the statement of the problem we see that $\angle E F C=\angle C F G=90^{\circ}$ and $\angle F C E=\angle F C G=45^{\circ}$. Therefore $E F C$ and $C F G$ are congruent right isosceles triangles with $|F C|=$ $|E F|=20 / 2=10$. Then $|E C|=10 \sqrt{2},|A C|=20+10=30$, and $|D C|=30 / \sqrt{2}=15 \sqrt{2}$, from which it follows that $|D E|=|D C|-|E C|=5 \sqrt{2}$.

3. Area of a Region

Determine the area of the region S defined by

$$
S=\left\{(x, y):(|x|-1)^{2}+(|y|-1)^{2} \leq 4\right\} .
$$

Solution. The region is symmetric across the x - and y-axes due to the absolute values, so it suffices to consider the part of the region in the first quadrant - which is the part of the disk $(x-1)^{2}+(y-1)^{2} \leq 4$ in the first quadrant.

This can be subdivided into simpler regions as shown. Region A is a square, with $\operatorname{Area}(A)=1$. Region B is a quarter circle, with $\operatorname{Area}(B)=(1 / 4) \cdot \pi \cdot 2^{2}=\pi$.
Region C is a right triangle with height 1 and hypotenuse 2 , hence Area $(C)=\sqrt{3} / 2$.
Region D is a sector with radius 2 and central angle $\pi / 6$ hence $\operatorname{Area}(D)=(1 / 2)(\pi / 6) \cdot 2^{2}=\pi / 3$.
Adding up, the area in the first quadrant is

$$
1+\pi+2(\sqrt{3} / 2)+2(\pi / 3)=1+\sqrt{3}+\frac{5 \pi}{3}
$$

hence, by the four-fold symmetry,

$$
\operatorname{Area}(S)=4+4 \sqrt{3}+\frac{20 \pi}{3}
$$

4. Matrix Involution

Show that there are infinitely many 3×3 matrices with integer entries such that $M^{2}=I$, where I is the 3×3 identity matrix.

Solution. Let

$$
M=\left[\begin{array}{ccc}
1 & 0 & 0 \\
k & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where k is any integer. We have:

$$
M^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
k & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
k & -1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 \cdot 1 & 0 & 0 \\
k-k & (-1) \cdot(-1) & 0 \\
0 & 0 & 1 \cdot 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

5. Evaluating Polynomials

The monic polynomial $f(x)$ has degree 2021, and $f(n)=n$ for each integer $n, 1 \leq n \leq 2021$. Find $f(2022)$, and justify your answer.

Solution. The answer is $2022+2021$!
Since $f(x)$ is monic of degree 2021, the polynomial $f(x)-x$ is also monic and of degree 2021. By hypothesis, the polynomial $f(x)-x$ has 2021 zeros, namely the integers from 1 to 2021 . Thanks to the fundamental theorem of algebra, and the fact that $f(x)-x$ is monic we can write:

$$
f(x)-x=\prod_{i=1}^{2021}(x-i)=(x-1)(x-2) \ldots(x-2020)(x-2021) .
$$

Therefore, we have the identity:

$$
f(x)=x+\prod_{i=1}^{2021}(x-i)
$$

Now we evaluate for $x=2022$:

$$
f(2022)=2022+\prod_{i=1}^{2021}(2022-i)=2022+2021!
$$

6. Sums of Reciprocals

Let x, y, z be positive real numbers.
(a) If $x+y+z \geq 3$, does it follow that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \leq 3$?
(b) If $x+y+z \leq 3$, does it follow that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq 3$?

Solution.

(a) No; for example, $(x, y, z)=(1,2,1 / 3)$ has $x+y+z>3$ and $1 / x+1 / y+1 / z=9 / 2$. In fact, the sum of reciprocals can be made arbitrarily large by taking $x=1, y=2$, and z arbitrarily close to zero.
(b) Yes. First note that, if α is a positive real number, then $(\alpha-1)^{2} \geq 0$ implies $\alpha^{2}+1 \geq 2 \alpha$ and dividing by α gives $\alpha+(1 / \alpha) \geq 2$. Now, suppose x, y, and z are positive, with $x+y+z \leq 3$. Then we have

$$
x+y+z+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right) \geq 2+2+2=6,
$$

and so

$$
\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 6-(x+y+z) \geq 3 .
$$

7. Integer Triangles

Find all (nondegenerate) triangles with integral sides, one side equal to 10 , and the cosine of an adjacent angle equal to $-1 / 5$.
Solution. There are three such triangles, namely $\{10,25,21\},\{10,14,8\},\{10,11,13\}$.
Let the other two sides be a and b, with a opposite the angle with cosine equal to $-1 / 5$. By the law of cosines we have:

$$
a^{2}=b^{2}+10^{2}-2 b \cdot 10(-1 / 5)=b^{2}+4 b+100 .
$$

This implies

$$
\begin{aligned}
a^{2}-b^{2}-4 b & =100, \\
a^{2}-(b+2)^{2} & =100-4, \\
(a+b+2)(a-b-2) & =96 .
\end{aligned}
$$

The two factors on the left in the last equation have the same parity, so both must be even. Moreover, since the larger factor $a+b+2$ is positive, the smaller factor $a-b-2$ must be positive as well. The possible values
for the smaller factor $a-b-2$ are $2,4,6$, and 8 . The corresponding values for the larger factor $a+b+2$ are $48,24,16$, and 12 . Solving the four resulting pairs of simultaneous equations we get

$$
(a, b)=(25,21),(14,8),(11,3), \text { and }(10,0)
$$

The last corresponds to a degenerate triangle, so there are exactly three triangles $\{10,25,21\},\{10,14,8\}$, and $\{10,11,13\}$.

8. Bounded Series

Prove that for every integer $n>1$,

$$
\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots+\frac{1}{(2 n+1)^{2}}<\frac{1}{4}
$$

Solution. The following inequality is satisfied for every positive integer k :

$$
k^{2}>k^{2}-1=(k-1)(k+1)
$$

Consequently, we have:

$$
\begin{aligned}
\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots+\frac{1}{(2 n+1)^{2}} & <\frac{1}{2 \cdot 4}+\frac{1}{4 \cdot 6}+\ldots \frac{1}{2 n(2 n+2)} \\
& =\frac{1}{2}\left(\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\cdots+\left(\frac{1}{2 n}-\frac{1}{2 n+2}\right)\right)
\end{aligned}
$$

where the last identity comes from the fact that for every integer k :

$$
\frac{1}{(k-1)(k+1)}=\frac{1}{2}\left(\frac{1}{k-1}-\frac{1}{k+1}\right)
$$

After simplifying (or "telescoping"), we get:

$$
\cdots=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2 n+2}\right)<\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} .
$$

9. Same Difference

Let $a_{1}, a_{2}, \ldots, a_{2 n}$ be $2 n$ distinct integers with $n>1$ and $0<a_{i} \leq n^{2}$ for each i. Prove that some three of the differences $a_{i}-a_{j}$ (with $i \neq j$) are equal.
Solution. We assume without loss of generality, that

$$
1 \leq a_{1}<a_{2}<\cdots<a_{2 n} \leq n^{2}
$$

Consider the $2 n-1$ differences

$$
a_{i+1}-a_{i}, \quad 1 \leq i \leq 2 n-1
$$

We want to show that in fact some three of these differences must be equal. If no three of these are equal, their sum is at least:

$$
1+1+2+2+\cdots+(n-1)+(n-1)+n=2\left(\sum_{i=1}^{n-1} i\right)+n=2 \cdot \frac{n(n-1)}{2}+n=n^{2}
$$

But this contradicts the fact that their sum is $a_{2 n}-a_{1} \leq n^{2}-1$. Therefore, some three of the differences $a_{i+1}-a_{i}$ are equal.

10. Integral Solutions

Consider the system of equations

$$
\begin{gather*}
x+y+z=3 \tag{1}\\
x^{5}+y^{5}+z^{5}=33 \tag{2}
\end{gather*}
$$

Find all of its solutions in integers (with justification) or show that no such solutions exist.
Solution. The are 6 integer solutions $(x, y, z)=(0,1,2)$ and its permutations. If x_{0}, y_{0}, and z_{0} are integers satisfying the equations, then they also satisfy $(x+y+z)^{5}-\left(x^{5}+y^{5}+z^{5}\right)=3^{5}-33=210$. The polynomial in the left-hand side, considered as a polynomial in x, vanishes for $x=-y$, so $x+y$ is a factor. By symmetry, $x+z$ and $y+z$ also are factors. From Pascal's triangle it follows that 5 is also a factor. Thus, for some polynomial $Q(x, y, z)$ we have, using (1),

$$
5\left(3-x_{0}\right)\left(3-y_{0}\right)\left(3-z_{0}\right) Q\left(x_{0}, y_{0}, z_{0}\right)=210=1 \times 2 \times 3 \times 5 \times 7
$$

or

$$
\left(3-x_{0}\right)\left(3-y_{0}\right)\left(3-z_{0}\right) Q\left(x_{0}, y_{0}, z_{0}\right)=210=1 \times 2 \times 3 \times 7
$$

From (1) we have that either all of x_{0}, y_{0}, z_{0} are odd, or two are even and one is odd. In the first case, all of $\left(3-x_{0}\right),\left(3-y_{0}\right),\left(3-z_{0}\right)$ are even, which is impossible based on the prime factorization of 210 , so two of them have to be odd and one even. Moreover, from (1) we see that

$$
\begin{equation*}
\left(3-x_{0}\right)+\left(3-y_{0}\right)+\left(3-z_{0}\right)=6 . \tag{3}
\end{equation*}
$$

Assuming $3-x_{0}$ is the even term, we have $3-x_{0}$ is one of $\pm 2, \pm 6, \pm 14$, or ± 42. The last 4 possibilities can be excluded since they won't allow (3) to be satisfied with the remaining factors of 210 (e.g., if $3-x_{0}=14$, that leaves $3-y_{0}= \pm 3$ and $3-z_{0}= \pm 1$ or the other way around and (3) can't be satisfied; similarly for the other three possibilities). The remaining possibilities with $3-x_{0}$ equal to ± 2 or ± 6 can be easily checked to be

$$
2+1+3=6, \quad 2-3+7=6, \quad-2+1+7=6, \quad 6+1-1=6 .
$$

These lead to (up to permutations of the order)

$$
\begin{aligned}
& x_{0}=1, y_{0}=2, z_{0}=0, \\
& x_{0}=1, y_{0}=6, z_{0}=-4, \\
& x_{0}=5, y_{0}=2, z_{0}=-4, \\
& x_{0}=-3, y_{0}=2, z_{0}=4 .
\end{aligned}
$$

Of these the first one clearly satisfies (2) since $1^{5}+2^{5}+0^{5}=33$. The second possibility would yield $1^{5}+\left(6^{5}-4^{5}\right)=1+(6-4)\left(6^{4}+6^{3} \cdot 4+6^{2} \cdot 4^{2}+6 \cdot 4^{3}+4^{4}\right)>1+2 \cdot 5 \cdot 4^{4}>33$ and similarly for the last two. Hence only the first possibility (and its permutations) are solutions of our system of equations.

